Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces.
نویسندگان
چکیده
Proper roughness design is important in realizing surfaces with fully tunable wetting properties. Engineering surface roughness boils down to an energy barrier optimization problem, in which the geometric features of roughness serve as the optimization parameters. Computations of energy barriers, separating admissible equilibrium wetting states on patterned surfaces, have been demonstrated utilizing fine-scale simulators (e.g., lattice-Boltzmann for mesoscale and molecular dynamics for microscale simulations), however with substantial computational requirements. Here, by solving an augmented Young–Laplace equation with a disjoining pressure term, we demonstrate accurate and efficient computations of equilibrium shapes of entire millimeter sized droplets on patterned surfaces. In particular, by adopting a natural parameterization of the Young–Laplace equation along the liquid/air and liquid/solid interfaces, the tedious implementation of the Young's contact angle boundary condition at multiple three phase contact lines is bypassed. We, thus, enable the computation of wetting transition energy barriers, separating the well-known Cassie–Baxter and Wenzel states, as well as intermediate states, but with negligible computational cost. We demonstrate the method's efficiency by computing the equilibrium of droplets on stripe-patterned surfaces, and compare the results with mesoscopic lattice Boltzmann simulations. Our computationally efficient continuum-level analysis can be readily applied to patterned surfaces with increased and unstructured geometric complexity, and straightforwardly coupled with shape optimizers towards the design of surfaces with desirable wetting behavior.
منابع مشابه
In Situ Experiments To Reveal the Role of Surface Feature Sidewalls in the Cassie–Wenzel Transition
Waterproof and self-cleaning surfaces continue to attract much attention as they can be instrumental in various different technologies. Such surfaces are typically rough, allowing liquids to contact only the outermost tops of their asperities, with air being entrapped underneath. The formed solid-liquid-air interface is metastable and, hence, can be forced into a completely wetted solid surface...
متن کاملFlow of thin films on patterned surfaces
We present fully nonlinear time-dependent simulations of the gravity driven flow of thin wetting liquid films. The computations of the flow down a homogeneous substrate show that the contact line where liquid, solid, and gas phase meet becomes unstable and develops patterns. These computations are extended to inhomogeneous surfaces, and show that inhomogeneity can induce instability of the flui...
متن کاملWetting and spreading
Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios ...
متن کاملModeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets
An analytic thermodynamic model has been established to quantitatively investigate the wetting states of droplets on nanopatterned surfaces. Based on the calculations for the free energies of droplets with the Wenzel state and the Cassie-Baxter state, it is found that the size and shape of nanostructured surfaces play crucial roles in wetting states. In detail, for nanohole-patterned surfaces, ...
متن کاملWater and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.
Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 9 40 شماره
صفحات -
تاریخ انتشار 2013